Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; : 118976, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705451

RESUMEN

This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23°C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.

2.
Chemosphere ; 357: 141963, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614397

RESUMEN

Groundwater contaminated with hexavalent chromium Cr(VI) causes serious health concerns for the ecosystem. In this study, a hybrid amino functionalized MOF@rGO nanocatalyst was produced by utilization of a biowaste mediated carbon material (reduced graphene oxide; rGO) and its surface was modified by in situ synthesis of a nanocrystalline, mixed ligand octahedral MOF containing iron metal and NH2 functional groups and the prepared composite was investigated for Cr (VI) removal. The photocatalytic degradation of Cr(VI) in aqueous solutions was carried out under UV irradiation. Using a batch mode system, the effect of numerous control variables was examined, and the process design and optimization were carried out by response surface methodology (RSM). The photocatalyst, NH2-MIL(53)-Fe@rGO, was intended to be a stable and highly effective nanocatalyst throughout the recycling tests. XRD, SEM, EDS, FTIR examinations were exploited to discover more about surface carbon embedded with MOF. 2 g/L of NH2-MIL-53(Fe)/rGO was utilized in degrading 200 mg/L of Cr(VI) in just 100 min, implying the selective efficacy of such a MOF-rGO nanocatalyst. Moreover, the Eg determinations well agreed with the predicted range of 2.7 eV, confirming its possibility to be exploited underneath visible light, via the Tauc plot. Thus, MOF anchored onto biowaste derived rGO photo-catalyst was successfully implemented in chromium degradation.


Asunto(s)
Cromo , Restauración y Remediación Ambiental , Grafito , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Cromo/química , Grafito/química , Catálisis , Contaminantes Químicos del Agua/química , Restauración y Remediación Ambiental/métodos , Estructuras Metalorgánicas/química , Carbono/química , Procesos Fotoquímicos , Agua Subterránea/química
3.
Chemosphere ; 357: 142051, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648988

RESUMEN

Water purification using adsorption is a crucial process for maintaining human life and preserving the environment. Batch and dynamic adsorption modes are two types of water purification processes that are commonly used in various countries due to their simplicity and feasibility on an industrial scale. However, it is important to understand the advantages and limitations of these two adsorption modes in industrial applications. Also, the possibility of using batch mode in industrial scale was scrutinized, along with the necessity of using dynamic mode in such applications. In addition, the reasons for the necessity of performing batch adsorption studies before starting the treatment on an industrial scale were mentioned and discussed. In fact, this review article attempts to throw light on these subjects by comparing the biosorption efficiency of some metals on utilized biosorbents, using both batch and fixed-bed (column) adsorption modes. The comparison is based on the effectiveness of the two processes and the mechanisms involved in the treatment. Parameters such as biosorption capacity, percentage removal, and isotherm models for both batch and column (fixed bed) studies are compared. The article also explains thermodynamic and kinetic models for batch adsorption and discusses breakthrough evaluations in adsorptive column systems. The review highlights the benefits of using convenient batch-wise biosorption in lab-scale studies and the key advantages of column biosorption in industrial applications.


Asunto(s)
Metales , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Metales/química , Cinética , Termodinámica , Iones/química
4.
Heliyon ; 10(3): e24966, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38327448

RESUMEN

This article discusses the main technologies for processing titanium-containing raw materials, the advantages, and disadvantages of various technological solutions. The analysis of the literature revealed that the traditional methods for the production of titanium products are mainly focused on the use of ilmenite concentrates. In connection with the depletion of ilmenite deposits, in the near future, there will inevitably be a need for a switch to the use of complex ores - titanomagnetite. Obtaining titanium dioxide (TiO2) from titanomagnetite raw materials with a high content of impurity components requires an individual approach for each specific deposit. The possibility of further improving the development of a technological process for low-temperature (1000-1200 °C) processing of titanomagnetite concentrates via the production of pure TiO2 is proposed.

5.
Bioengineered ; 14(1): 290-306, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37477231

RESUMEN

Biochar has shown large potential in water treatment because of its low cost, good textural properties, and high reusability. In this study, two porous biochars were developed from the Melia azedarach seeds via direct pyrolysis process (B-700) and through hydrothermal carbonization followed with pyrolysis (HB-700). They were characterized by morphology, structural characteristics, and surface features and used to adsorb the crystal violet (CV) dye in water environment. Results of the isotherm approaches demonstrated that the removal capacity of these biochars reached 119.4 mg/g for B-700, and 209 mg/g for HB-700 (at 45°C). Also, the Avrami model best fitted the kinetic data. The electrostatic attraction was regarded as one of the adsorptions mechanisms of CV dye. The regeneration tests reveal that both B-700 and HB-700 are good reusable adsorbents. Finally, findings of the study showed that the hydrothermal carbonization method that precede the pyrolysis process can improve significantly the adsorption capacity of the produced biochar.


Asunto(s)
Melia azedarach , Contaminantes Químicos del Agua , Violeta de Genciana , Pirólisis , Semillas , Cinética , Contaminantes Químicos del Agua/química
6.
Environ Res ; 236(Pt 2): 116735, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517489

RESUMEN

In the current study, an attempt was made to synthesize coffee husk (CH) activated carbon by chemical modification approach (sulphuric acid-activated CH (SACH) activated carbon) and was used as a valuable and economical sorbent for plausible remediation of Methylene blue (MB) dye. Batch mode trials were carried out by carefully varying the batch experimental variables: SACH activated carbon (SACH AC) dosage, pH, initial dye concentration, temperature, and contact time. The optimum equilibrium time for adsorption by SACH activated carbon was obtained as 60 min, and the maximum adsorption took place at 30 °C. Morphological and elemental composition, crystallinity behaviour, functional groups, and thermal stability were examined using SEM with EDX, XRD, FTIR, BET, TGA, and DTA and these tests showed successful production of activated carbon. The outcomes showed that chemical activation enhanced the number of pores and roughness which possibly maximized the adsorptive potential of coffee husk. The Box-Benken design (BBD) was used to optimize the MB dye adsorption studies and 99.48% MB dye removed at SACH AC dosage of 4.83 g/L at 30 °C for 60 min and pH 8.12, and the maximum adsorption was yielded for sulphuric acid-activated coffee husk carbon carbon with 88.1 mg/g maximum MB adsorption capacity. Langmuir- Freundlich model deliberately provided a better fit to the equilibrium data. The SACH AC-MB dye system kinetics showed a high goodness-of-fit with pseudo second order model, compared to other studied models. Change in Gibbs's free energy (ΔGo) of the system indicated spontaneity whereas low entropy value (ΔSo) suggested that the removal of MB dye on the SACH activated carbon was an enthalpy-driven process. The exothermic nature of the sorption cycle was affirmed by the negative enthalpy value (ΔHo). The adsorptive-desorptive studies reveal that SACH AC could be restored with the maximum adsorption efficiency being conserved after the fifth cycles. Overall, the outcomes revealed that sulphuric acid-activated coffee husk activated carbon (SACH AC) can be used as prompt alternative for low-cost sorbent for treating dye-laden synthetic wastewaters.


Asunto(s)
Coffea , Contaminantes Químicos del Agua , Azul de Metileno/análisis , Carbón Orgánico , Adsorción , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Termodinámica , Cinética , Agua/química
7.
Chemosphere ; 335: 139168, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37295689

RESUMEN

Carbon nanotubes were used to immobilize Chrysosporium fungus for building an adequate adsorbent to be used as an desirable sorbent for preconcentration and measurement of cadmium ultra-trace levels in various samples. After characterization, the potential of Chrysosporium/carbon nanotubes for the sorption of Cd(II) ions was scrutinized by the aid of central composite design, and comprehensive studies of sorption equilibrium, kinetics and thermodynamic aspects were accomplished. Then, the composite was utilized for preconcentration of ultra-trace cadmium levels, by a mini-column packed with Chrysosporium/carbon nanotubes, before its determination with ICP-OES. The outcomes vouchsafed that (i) Chrysosporium/carbon nanotube has a high tendency for selective and rapid sorption of cadmium ion, at pH 6.1, and (ii) kinetic, equilibrium, and thermodynamic studies showed a high affinity of the Chrysosporium/carbon nanotubes for cadmium ion. Also, the outcomes displayed that cadmium can quantitatively be sorbed at a flow speed lesser than 7.0 mL/min and a 1.0 M HCl solution (3.0 mL) was sufficient to desorbe the analyte. Eventually, preconcentration and measurement of Cd(II) in different foods and waters were successfully accomplished with good accuracy, high precision (RSDs ≤5.65%), and low limit of detection (0.015 µg/L).


Asunto(s)
Chrysosporium , Nanotubos de Carbono , Nanotubos de Carbono/química , Cadmio/química , Adsorción , Indicadores y Reactivos , Iones , Concentración de Iones de Hidrógeno , Espectrofotometría Atómica
8.
Environ Sci Pollut Res Int ; 30(32): 78521-78536, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37271788

RESUMEN

The effect of polydopamine (PDA) modification on aminated Fe3O4 nanoparticles (Fe3O4-NH2)/graphite oxide (GO)/ß-cyclodextrin polymer cross-linked by citric acid (CDP-CA) composites were studied for the removal of a cationic dye (methylene blue, MB) and an anionic dye (Congo red, CR) from waters. The micro-structural and magnetic characterizations confirmed the successful preparation of Fe3O4-NH2/GO/CDP-CA and PDA/Fe3O4-NH2/GO/CDP-CA composites. The maximum MB and CR adsorption capacities of Fe3O4-NH2/GO/CDP-CA were 75 mg/g and 104 mg/g, respectively, while the corresponding amounts for PDA/Fe3O4-NH2/GO/CDP-CA composite were 195 mg/g and 64 mg/g, respectively. The dye sorption behaviors of these two composites were explained by their corresponding surface-charged properties according to the measured zeta potential results. Moreover, the high saturation magnetizations and the stable dye removal rate in the adsorption-desorption cycles indicated the good recyclability and reusability of the fabricated composites.


Asunto(s)
Ciclodextrinas , Grafito , Grafito/química , Ácido Cítrico , Óxidos/química , Adsorción , Fenómenos Magnéticos
9.
Environ Res ; 233: 116486, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37369306

RESUMEN

The presence of various organic and inorganic contaminants in wastewater leads to serious health effects on humans and ecosystems. Industrial effluents have been considered as noticeable sources of contaminating water streams. These effluents directly liberate the pollutants such as dye molecules and heavy metal ions into the environment. In the present study, three biowaste materials (groundnut shell powder, coconut coir powder and activated corn leaf carbon) were utilized and compared for the removal of acid blue dye 113 from aqueous solutions. The characterization study of newly prepared sorbent material (H3PO4-activated corn leaf carbon) and the other utilized sorbents was carried out by Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectrophotometer (FTIR), along with Energy Dispersive X-Ray (EDX) Analysis. The influence of experimental conditions such as pH, initial dye concentration, temperature, contact time, and sorbent dosage on the removal efficiency of the dye were appraised. The adsorption isotherm and kinetic result of acid blue dye 113 adsorption onto the sorbents best obeyed from Sips and pseudo-second-order kinetic model. Overall, the outcomes confirmed that the newly synthesized sorbent material (carbonized H3PO4-activated corn leaf) has superior adsorption capacity, rapid adsorption, and higher suitability for the removal of toxic dyes from the contaminated waters.


Asunto(s)
Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Adsorción , Colorantes/química , Biomasa , Ecosistema , Polvos , Carbono , Cinética , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
10.
Chemosphere ; 331: 138680, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37119925

RESUMEN

The worldwide trend in energy production is moving toward circular economy systems and sustainable availability of sources. Some advanced methods support the economic development of energy production by the utilization of waste biomass, while limiting ecological effects. The use of agro waste biomass is viewed as a major alternative energy source that expressively lowers greenhouse gas emissions. Agricultural residues produced as wastes after each step of agricultural production are used as sustainable biomass assets for bioenergy production. Nevertheless, agro waste biomass needs to go through a few cyclic changes, among which biomass pre-treatment contributes to the removal of lignin and has a significant role in the efficiency and yield of bioenergy production. As a result of rapid innovation in the utilization of agro waste for biomass-derived bioenergy, a comprehensive overview of the thrilling highlights and necessary advancements, in addition to a detailed analysis of feedstock, characterization, bioconversion, and contemporary pre-treatment procedures, appear to be vital. To this end, the current status in the generation of bioenergy from agro biomass through various pre-treatment procedures was examined in this study, along with presenting relevant challenges and a perspective for future investigations.


Asunto(s)
Agricultura , Fuentes Generadoras de Energía , Biomasa , Lignina , Desarrollo Económico , Biocombustibles
11.
Sci Total Environ ; 863: 160871, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36521616

RESUMEN

Water scarcity has been felt in many countries and will become a critical issue in the coming years. The release of toxic organic and inorganic contaminants from different anthropogenic activities, like mining, agriculture, industries, and domestic households, enters the natural waterbody and pollutes them. Keeping this in view in combating the environmental crises, removing pollutants from wastewater is one of the ongoing environmental challenges. Adsorption technology is an economical, fast, and efficient physicochemical method for removing both organic and inorganic pollutants, even at low concentrations. In the last decade, graphene and its composite materials have become the center of attraction for numerous applications, including wastewater treatment, due to the large surface area, highly active surface, and exclusive physicochemical properties, which make them potential adsorbents with unique physicochemical properties, like low density, chemical strength, structural variability, and the possibility of large-scale fabrications. This review article provides a thorough summary/critical appraisal of the published literature on graphene-, GO-, and rGO-based adsorbents for the removal of organic and inorganic pollutants from wastewater. The synthesis methods, experimental parameters, adsorption behaviors, isotherms, kinetics, thermodynamics, mechanisms, and the performance of the regeneration-desorption processes of these substances are scrutinized. Finally, the research challenges, limitations, and future research studies are also discussed. Certainly, this review article will benefit the research community by getting substantial information on suitable techniques for synthesizing such adsorbents and utilizing them in water treatment and designing water treatment systems.

12.
Environ Sci Pollut Res Int ; 30(2): 3121-3132, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35945321

RESUMEN

Keeping selectiveness and efficiency in view with solid-phase microextraction (SPME) of metal ions, this work was aimed at synthesis of a novel modified sorbent on a stainless-steel surface to fabricate a selective and efficient fiber for SPME of mercury ions from real food and biological samples. After the confirmation of sorbent structure grafted on the stainless-steel surface, by different techniques, the synthesized fiber was utilized for extraction and preconcentration of mercury before its measurement by an inductively coupled plasma-optical emission spectroscopy (ICP-OES). For optimizing the efficiency, the influences of various factors on the extraction of Hg (II) ion were scrutinized. The optimized values used for extraction were pH 7.0, adsorption time 8 min, desorption time 5 min, 5 mL of eluent solvent containing nitric acid with concentration of 0.5 mol L-1, and stirring rate of 300 rpm. Underneath optimum condition, the relative standard deviation for 30 extractions, done by one synthesized fiber, was calculated to be 2.89% and for five extractions, done by 5 synthesized fibers, was calculated to be 1.78%. The high performance of the synthesized fiber was checked with high recoveries obtained from 30 successive sorption-desorption cycles, using a unique synthesized fiber. Finally, the suggested procedure was triumphally exploited for extraction and pre-concentration of Hg (II) ion in real food and biological samples.


Asunto(s)
Mercurio , Microextracción en Fase Sólida , Microextracción en Fase Sólida/métodos , Acero Inoxidable/química , Metales/química
13.
Chemosphere ; 311(Pt 1): 136804, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36228723

RESUMEN

Keeping the high potential of some microorganisms in adsorption of radionuclides in view, the adsorption properties of Enterobacter cloacae towards uranium were attentively scrutinized, and then it was used for preconcentration of uranium in different samples, using Enterobacter cloacae/carbon nanotube composite. First, using ultrasonic agitation, the effects of operational factors on biosorption of uranium on the inactive Enterobacter cloacae were appraised and modeled by central composite design, and a comprehensive study was performed on the equilibrium, kinetics, thermodynamic, and selectivity aspects of biosorption. The optimization studies along with the evaluations of the adsorption properties revealed that Enterobacter cloacae have a high affinity for fast and selective biosorption of uranium ions, at pH 5.1. Second, the Enterobacter cloacae/carbon nanotube was synthesized, characterized, and utilized for preconcentration of uranium in different samples, using a mini-column packed with the composite. The optimization of operational factors on recovery of uranium, using the central composite design, showed that uranium can be quantitively adsorbed at a sample flow rate lower than 4.5 mL min-1 and the desorption could be accomplished with 3.0 mL HCl 0.6 M solution. Finally, the mini-column was exploited for preconcentration and determination of uranium in different samples. The results revealed the low detection limit (0.015 µg.L-1), high precision (RSDs ≤3.92%), and good accuracy of the proposed procedure.


Asunto(s)
Nanotubos de Carbono , Uranio , Uranio/análisis , Adsorción , Enterobacter cloacae , Iones , Cinética , Agua , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...